IOP SClence jopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

A system of parallel conductors in an external field

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1980 J. Phys. A: Math. Gen. 13 325
(http://iopscience.iop.org/0305-4470/13/1/032)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 20:06

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/13/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Gen., 13 (1980) 325-332. Printed in Great Britain

A system of parallel conductors in an external field
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Abstract. We present and discuss the general solution of the electrostatic problem of a
system of parallel cylindrical conductors in the presence of an external field and in particular
in a homogeneous external field. For this purpose we make extensive use of the theory of
automorphic functions. We determine the polarisation of the system.

1. Introduction

There has recently been an increasing interest in the solution of the electromagnetic
problem for a system of parallel cylindrical conductors. Let us mention as examples the
calculation of proximity effects in multiwire cables (Belevitch 1977) and the deter-
mination of propagation parameters in uniform cables (Lenahan 1977) (see also Paul
and Feather 1976). The electromagnetic problem of parallel cylindrical conductors can
be solved in a very general way with the help of the theory of automorphic functions
(Alessandrini et al 1974). The desired solution is found by means of a generalisation of
the method of images; these are generated in a systematic way using the group of
automorphisms associated with the given problem. Related electromagnetic problems,
such as the skin effect in multiconductor systems (Alessandrini et al 1976), can be
treated in a similar way.

Our main purpose here is to present and discuss the general solution of the
electrostatic problem of a system of parallel conductors in an external dipole field
(Burnside 1891). The particular case of a homogeneous external field may be relevant
for the design of multiwire proportional chambers. The dipole moment of the system is
relevant in the treatment of artificial dielectrics, either ordered (Collin 1960) or random
(Levine and McQuarrie 1968).

In § 2 we briefly review the necessary elements of the theory of automorphic
functions connected with our problem. The cases of one and two conductors in an
external field are treated explicitly in § 3 so as to show the potentialities of our
approach. These results are then used to improve the convergence of the series in the
general case. Finally, § 4 is devoted to the computation and discussion of the dipole
moment of the system and to state our conclusions.
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2. The group of automorphisms

We begin our discussion by introducing a generalisation of the method of images. Asis
well known, the image of a point z in the complex plane C, with respect to any circle, is
not an analytic function of z. However, a pair of inversions with respect to two circles is
indeed an analytic function of z. This double inversion has the form

2'=T(z)=(az+b)/(cz+4d), 2.1

which is called a projective transformation (Forsythe 1918). The coefficients a, b, c, d
are complex numbers on which we impose the restriction

ad—bc=1. (2.2)

This equation, together with the geometry of the problem (position and radii of the
circles), completely determines the values of the four constants. The set of all projective
transformations is a group isomorphic to SL(2, C).

Two important properties of projective transformations are that they map circles
onto circles and that they preserve anharmonic ratios.

We define the fixed points of a transformation by the equation

T(z)=z (2.3)

The projective transformation (2.1) has two fixed points ¢ and 7.
If £ # n, then the transformation

_z/E-n)'"P— g/ - )"
z/(E=n)'"P—n/(E—n)?

maps (& n) onto (0, o), and (2.1) acts on z’ as a scale transformation
T'(z')=1Tt (") =Kz, (2.5)

where X is the multiplier of T. In the following, we shall choose (£, 1) in such a way that
|K|>1.

Now we come to the problem of N + 1 parallel cylindrical conductors. They define,
in the complex plane C, aset of N + 1 non-intersecting circles. We begin by forming the
inverses of the circles 1, 2, ..., N with respect to the one labelled 0, and then construct
N transformations 7; mapping each circle onto its inverse. A group of projective
transformations, called the group of automorphisms of the domain under considera-
tion, can be built with the T} and their inverses T; ' all binary products T%, .75,
T:Ts,...,T\T7',...; all ternary products such as T3, T,T3,...; and so on. (For
details see Alessandrini et al (1974).) We shall call T; the generators of the group of
automorphisms and shall label with T, any element of the group.

As T; is the product of inversions with respect to the circles { and 0, the set of
transformations {7, } applied to a given point z generates only half of the images. The
other half is generated by application of {T,} to Z, the inverse of z with respect of the
circle 0.

The group of automorphisms provides the formal definition of the generalised
method of images. Using it, we shall find series for the Green function involving its
elements 7. We shall be faced with the so-called automorphic functions, defined by the

property

z'=1t(z) (2.4)

O[T, (2)]=¢(2). (2.6)
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The theory of these automorphic functions (developed in Burnside 1891) is based
on the Poincaré 6 series

0(z,5) =Y (Caz +da) (Tu(2)—5)7", 2.7)

where (c.z +d,) > is a convergence factor. This is actually an automorphic form of
dimension two, having the property

0[Ts(2), s1=(coz +dp)*8(z, 5), (2.8)

but automorphic functions can be built out of it. It has been proved (Burnside 1891)
that there exist only N independent 6 functions for a domain of multiplicity N.

The main tool for the solution of electrostatic problems related to the system of
circles is the Green function of the domain, which can be constructed immediately from
the generalised method of images. For isolated conductors it is given by

(Ta(z)'—s)(Ta(ZO)_S_)>
(Ta(2) =5 Talz0) =)/’

where s is the position of the source point, § its inverse with respect to the circle 0, and z,
the normalisation point where w,:(z0)=0. Expression (2.9) coincides with the
definition of the third Abelian integral of the domain in the complex normalisation.

We shall be mainly interested in the potential and the field distribution generated by
a dipole line, and in particular those generated by a uniform field. This potential can be
found from the Green function in the following way:

®,:(2)=p.V,:(z)=3(p 8/8s + p* 3/35)w, s(z)

w.s(2) =L In( 2.9)

1 1
=PL (Ta(z>—s‘n<zo)—s>
R? 1 1
T LT ) 219
where p is the external dipole moment per unit length, and R and J are the radius and

centre of the circle 0.
The function

1 1
v.0=L (7 e ) @1h

is called the second Abelian integral of the domain (Burnside 1891). The complex
potential of a dipole can be written in terms of second Abelian integrals as

®,:(z2)=—pV¥(2)—[R*/(S* - T"p*¥:(2). (2.12)

The particular case of the uniform external field is obtained in the limit s » 00, p »
and p = E*s*. In this way we obtain

1 1
®x(2)= E* T (T.(2)- T (z) - ER*E - ), 2.13
£(2)=E* ¥ (Ta(2)~ Tu(z0) N Ee T o= (2.13)
where E stands for the uniform external field.
Both (2.10) and (2.13) are rapidly convergent series which satisfy the boundary
conditions. The potentials are given by the sum of the potentials generated by all the
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images of the dipole; the functions involved have only simple poles (singularities
characteristic of dipole lines in two dimensions) inside the circles.

Let us finally remark that we can build up other Green functions with different
boundary conditions.

For instance, a Green function for grounded conductors can be found by adding to
equation (2.9) a suitable set of first Abelian integrals. These latter functions represent
the potentials due to charged conductors (Alessandrini et al 1974).

3. Discussion of simple cases

Let us first consider the case of a simple circle in an external field. The group of
automorphisms reduces to the identity and we immediately obtain

®e(z) = E*(z —20)= ER*[1/(z =)~ 1/(z0=])], (3.1

which is the well-known elementary solution.

As a second example, we consider the case of two identical cylinders in the field of a
dipole line at the point 5. With the geometry shown in figure (1), the only generator of
the group of automorphisms is

2 2 2 2
r=(Gary 2o ) @2
whose fixed points are
£=+(J?=RH'?, n=—J*-R*)"?, 3.3)
and whose multiplier is
K=[J+8/U-OT. (3.4)

In this simple configuration the set of images is generated by repeated reflection on
both circles.

£ | o

Figure 1. Two identical cylinders in the field of a dipole line at the point s.
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We can now write the solution of this problem using equation (2.10):

1
Pes "n;_w(r"(z) s T"(ZO)—S>
R* . & 1 1
_(S*—J*)p n;—oo(T"(z)-E_T"(zo)—s')' (3.5)

We shall next find a compact expression for this potential in terms of Jacobi theta
functions (Whittaker and Watson 1927). Let us perform the transformation (2.4) on
our solution (3.5), taking into account that, under a projective transformation

=(Az+B)/{(Cz + D), ‘ (3.6)
the second Abelian integral transforms as
V.(z)=(Cs + D)*¥:(2"), (3.7)

due to the properties of the Poincaré 4 series. For our case,

2= ¥ (e (3.8)

noco \K"z'—s" K"z5—5s

Define now the variable u by

z'=s" exp(—2iu), (3.9)
and the second Abelian integral (3.8) becomes
, 1 2i & sin(2u)K™"
(u)= +=
Wolu)= s'lexp(—2iu)-1] s’ /=11-2cosQQu)K " -K™*"
1 2i ® sin(2ug) )
- 3.1
( "Texp(—2iup) — 1] s’ 211-2cosQuo)K " -K™*" (3.10)

This series can be summed using the expansion for the logarithmic derivative of the
Jacobi theta function (Whittaker and Watson 1927):

01(u) 01(uo)
v ——(—— > 3.11
W)= 2\ 6w)  Ga(wo) (3.11)
With this result, our potential can be cast into the form
(1-s) (1-§)* R%p*
b, (u)=——pV.(u)- Wo(u 3.12
s(u) p p¥e(u) E—n (S —J*7 (u) (3.12)

Finally, taking the limit s - c© (s’ - 1), the complex potential of two identical cylinders in
an external uniform field becomes

01 (u) 91(”0)) E(n-&)- (9 1(u—mr/2) 61 (uo— 7T7'/2))
61(u)  61(uo) 2\601(u—m1/2) 61(uo—m1/2) ,(
3.13)

@)= B (n - (2

where 7 (quarter period of the Jacobi theta functions) is defined by

K =exp(—2wir). (3.14)
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In order to show that this result agrees with the already known solution (Morse and
Feshbach 1961), let us introduce the variable
w =im+2iu. (3.15)

If we substitute (3.15) in equation (3.13) and use the Fourier series of logarithmic
derivatives of the theta functions (Whittaker and Watson 1927), we find

S \n sinh(nw) _sinh n(w —2&)
El( ) (sinh(2n§o) sinh(2néo) )]

(IDE(w)=iE[1+2 (3.16)

where & is the dipolar coordinate of the surface of the cylinder. The real part of this
analytic function coincides with the solution given by Morse and Feshbach (1961).
We end this section with a remark concerning the general case of N + 1 conductors.
Obviously, the summation method used in the case of two conductors can be applied in
the general case to any group element T,. The calculations lead to a compact
expression for the second Abelian integral:
. 2
q/;,(z')=_,1__,__l__1__’+l (A=)
2'=s" zo—s'" 24em €a—Ma
« (0'1('»43)_9'1(”03)
61(ug)  01(uop)

where the sum extends over the set M of elements of the group which are not powers of
any other element. This last form of the series represents a great improvement in the
convergence whenever an element of the group becomes ‘near parabolic’ (Alessandrini
etal 1974).

—cot ug +cot uo,;), (3.17)

4. Dipole moment

We shall now compute the dipole moment per unit length of our system of parallel
conductors (or discs). Let us first recall that the dipole moment per unit length of a
system of line charges is defined as the coefficient of the term 1/z in the asymptotic
expansion of the potential, and the susceptibility of the system is the derivative of the
dipole per unit length with respect to the external field.

The total dipole moment of our system of circles will be given by

P=(1/27ri)§d>5(z) dz, (4.1)

where the integration path is a contour encircling all the conductors.

As the only singularities of the potential are simple poles inside the conductors, we
can immediately write an alternative form for the dipole moment as a sum of the dipole
moments of all the images:

P=Y res(Pg(z.)), k (4.2)

where the z, are the locations of all the images of the dipole at infinity,

= ()

T.(&) 4.3)
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For the general case of N + 1 conductors in homogeneous external field E, we have
from equation (3.17) the expression

iE* 61 61
®el)= E*z —20= 5 T, (6a=ne){ 3 3= cotlug) =51 225

E"‘R2 iER* £ — Mg
z—J 2 gem(J—mp)J — &)
X(OQ(ﬁg) 61 (og)
61(113) 01(1206)

Equation (4.4) reduces to (3.13) for the case of a pair of cylinders.
The poles of the potential are the zeros of the Jacobi theta functions, located at the
points

+cot(u03)>

— cot(is) +cot(ﬁo,;)). (4.4)

4 =nm+mmr, 4.5)
with n and m integers. The computation of the residues is very simple, and we find that
Y res(8} (u)/61(u)—cot u)

~He-n 3 e (o= e “.6)

where C is defined by

C=U-ne)/(J~ &), 4.7
so that

exp(—2iidg) = (z — &)C/(z — mp), (4.8)
and the correspondingrelation for « is found by setting C = 1 in (4.8). Introducing now

C = exp(2ir), 4.9)
one finds that

(d/dr)(81(r)/ 61(r) —cot(r)) = ¥ res(61 (u)/ 61(u) — cot(w)), (4.10)

and using well-known properties of the Jacobi theta functions one finally obtains

D2 (&5~ ms)’ 9"'(0)
=-ER"- 4 6§M 3 ( 8:(0) 1)
_ER’ (Es—me)* (01 6°(n 1 )
4 G —mp)T —&)\0:(r) 6%(r) sin’(r))

For the particular case of a pair of cylinders we have r=—7/2, and only one term
survives in the series (4.11). The result is

pa=-E{R*+ [ 20 (X 1/4‘2" - o). 4.12)

The susceptibility tensor can be found by taking the derivative with respect to the
external field in this last expression.

Let us finish with some remarks concerning our results. The series of Burnside for
the Abelian integrals of the given multiply connected domain, related to the system of

4.11)
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cylinders in an external field, has here been shown to be a consequence of a generalisa-
tion of the method of images. The group properties embedded in this method were used
to find a partial summation of the series, and to express the sums in terms of Jacobi theta
functions. This result represents a great improvement in the convergence properties.
The dipole moment of the system was found from the above-mentioned solution and
could also be expressed as a series of Jacobi theta functions. The polarisation of the
system of conducting cylinders can be found from these results. These are the main
ingredients for the study of artificial dielectrics, a problem which will be taken up in
forthcoming papers.
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